A A7010

Total Pages: 2

Re	g No	o.: Name:	-
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017			
Course Code: EC301			
Course Name: DIGITAL SIGNAL PROCESSING			
Max. Marks: 100 PART A Duration: 3 Hours			
		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Explain, how DFT and IDFT can be expressed as Linear Transformation	(3)
	b)	Derive the relationship of DFT to Z-transform	(3)
	c)	Find the circular convolution of $x[n] = \{1, 2, -1, 3, 4\}$ and $h[n] = \{2, -1, 4, 1, 3\}$	(5)
	d)	Explain overlap add method for filtering of long data sequences.	(4)
2	a)	Show that, if $x[n]$ is a real and even sequence, then its DFT $X[k]$ is also real and even	(3)
	b)	Find linear convolution of $x[n] = \{2, 3, -1\}$ and $h[n] = \{1, -1, 2\}$, using circular convolution.	(5)
	c)	Find the number of complex multiplications involved in the calculation of a 1024	(3)
		point DFT using (i) direct computation(ii) radix-2 FFT algorithm	
	d)	Explain, how N point DFTs of two real-valued sequences can be found by	(4)
		computing a single N point DFT.	
3	a)	Find 8 point DFT of $x[n] = \{2, 1, -1, 3, 5, 2, 4, 1\}$ using radix-2 decimation in time	(11)
		FFT algorithm	
	b)	Explain, how a 2N point DFT of a 2N point real-valued sequence can be found by	(4)
		computing a single N point DFT.	
PART B			
Answer any two full questions, each carries 15 marks.			
4	a)	Prove that, if z_1 is a zero of a linear phase FIR filter, then $1/z_1$ is also a zero.	(5)
	b)	Design a linear phase FIR low pass filter having length $M=15$ and cut-off	(10)
		frequency $\omega_c = \pi/6$. Use Hamming window.	
5	a)	Explain the design of linear phase FIR filters by the frequency sampling method.	(9)
	b)	Explain the frequency transformations in the analog domain	(6)
6		Design a digital Butterworth low pass filter with $\omega_p = \pi/6$, $\omega_s = \pi/4$, minimum	(15)
		pass band gain = -2dB and minimum stop band attenuation = 8dB. Use bilinear	

A A7010

transformation. (Take T = 1)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Find the lattice structure implementation of FIR filter $h[n] = \{1, 0.5, 0.75, -0.6\}$ (6)
 - b) Draw the direct form II structure and transposed direct form II structure of (5)

$$H(z) = \frac{1 + 0.5z^{-1} - 0.75z^{-2}}{1 + 0.6z^{-1} + 0.4z^{-2} - 0.2z^{-3}}$$

- c) Draw the block diagram of TMS320C67XX and briefly explain the function of (9) each block.
- 8 a) Draw the direct form realization of linear phase FIR filter (5) $h[n] = \{1, 0.5, 0.25, -0.5, 0.8, -0.5, 0.25, 0.5, 1\} \text{ using minimum multipliers.}$
 - b) Draw the signal flow graphs of direct form II and cascade form structures (5) of $H(z) = \frac{(0.8+0.2z^{-1}+0.6z^{-2})(1-0.6z^{-1})}{(1-0.6z^{-1}+0.8z^{-2})(1+0.8z^{-1}-0.7z^{-2})}$
 - c) Explain the effects of coefficient quantization in IIR and FIR filters. (10)
- 9 a) Give the output of decimation by M system in time domain. Explain output (10) frequency spectrum. What is the importance of low pass filtering prior to down-sampling?
 - b) How does a floating-point number represented in a processor? Explain the (5) operations of addition and multiplication of two floating point numbers with examples.
 - c) Derive the variance of quantization noise in ADC with step size Δ . (Assume (5) quantization noise has uniform distributed pdf with zero mean)
